獲取短信驗證碼
2024-11-09
高低溫環(huán)境下永磁電機系統(tǒng)的器件特性和指標變化大,電機模型與參數(shù)復雜,非線性度增加、耦合程度增加,功率器件損耗變化大,不但驅(qū)動器的損耗分析與溫升控制策略復雜,而且四象限運行控制更加重要,常規(guī)的驅(qū)動控制器設(shè)計和電機系統(tǒng)控制策略不能滿足高溫環(huán)境的要求。
常規(guī)設(shè)計的驅(qū)動控制器工作在環(huán)境溫度相對穩(wěn)定條件下,而且很少考慮質(zhì)量、體積等指標。然而在極端工況下,環(huán)境溫度在-70~180℃的寬溫區(qū)范圍內(nèi)變化,大部分的功率器件無法在此低溫中啟動,導致驅(qū)動器功能失效。另外受電機系統(tǒng)總質(zhì)量限制,驅(qū)動控制器的散熱性能必然要大幅度減小,這反過來影響驅(qū)動控制器的性能及可靠性。
超高溫條件下,成熟的SPWM、SVPWM、矢量控制方法等開關(guān)損耗較大,應(yīng)用受到限制。隨著控制理論和全數(shù)字控制技術(shù)的發(fā)展,速度前饋、人工智能、模糊控制、神經(jīng)元網(wǎng)絡(luò)、滑模變結(jié)構(gòu)控制和混沌控制等各種先進算法在現(xiàn)代永磁電機伺服控制中都有了成功的應(yīng)用。
對耐高溫環(huán)境永磁電機驅(qū)動控制系統(tǒng),必須以物理場計算為基礎(chǔ),密切結(jié)合材料與器件特性的變化特點,建立電機-變流器一體化模型,進行場路耦合分析才能充分考慮環(huán)境對電機系統(tǒng)特性的影響,充分利用現(xiàn)代控制技術(shù)以及智能控制技術(shù),才能提高電機綜合控制品質(zhì)。另外,工作于惡劣環(huán)境下的永磁電機由于不易更換,處于長時間運行工況下,并且外部環(huán)境參數(shù)( 包括:溫度、壓強、氣流速度和方向等)變化復雜,導致電機系統(tǒng)工況隨動。因此,必須研究參數(shù)攝動以及外部擾動情況下永磁電機高魯棒性驅(qū)動控制器的設(shè)計技術(shù)。
來源:珠海運控
(版權(quán)歸原作者或機構(gòu)所有)